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The results are reported of velocity measurements in oscillatory flow over rippled beds. 
Velocities were measured with a laser-doppler anemometer in both an oscillating tray 
rig and an oscillatory flow water channel. Both self-formed and artificial ripples were 
examined. In addition, some measurements were made with an apparently plane bed 
with intense sediment motion. 

The experimental results were compared with the predictions of Kalkanis (1964), 
Kajiura (1968), Bakker (1973,1974) and Sleath (1974). The closest agreement between 
theory and experiment was obtained with the method of Sleath. 

Measurements of the Eulerian drift velocities showed drift towards the adjacent 
ripple crest in the immediate vicinity of the bed and away from the crest further out. 

1. Introduction 
A knowledge of the fluid velocity distribution close to the sea bed is of considerable 

importance to the coastal engineer. Although the solution for laminar oscillatory flow 
past a plane bed was given by Stokes as long ago as 1851, much less is known about the 
velocities close to a rippled bed. Unfortunately the sea bed is frequently rippled and 
rarely plane. 

In this paper we will be concerned with ripples produced by wave action alone. 
The effects of steady currents and tides are not considered. Lyne (1971) has obtained 
solutions for low height-to-length ratio ripples for both the case a l L  < 1 and for the 
case a / L  >> 1, where a is the amplitude of the fluid oscillation just outside the boundary 
layer at  the bed and L is the wavelength of the ripple. Qualitative support for Lyne’s 
solution for a / L  1 has been provided by the flow visualization experiments of 
Kaneko & Honji (1979). 

There seems, however, to be no generally accepted solution for what Bagnold (1946) 
called ‘vortex ripples’. These are the ripples which are most commonly found when 
the sediment transport is not too intense. Their height-to-length ratio varies from 
about 0.1 up to about 0.25 and they are characterized by vortex formation in the lee 
of the ripple crest. Various different approaches may be used to obtain solutions for 
the velocity distribution with this type of ripple. Firstly, i t  may be assumed that 
ripples are just another form of bed roughness and that consequent’ly the technique 
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used for turbulent boundary layers in steady flow over rough beds may be extended 
to oscillatory flow. This is the approach adopted by Kajiura (1968), Bakker (1973, 
1974) and Jonsson (1980). On the other hand, Sleath (1974, 1 9 7 5 ~ )  suggested that the 
flow might remain laminar to much higher Reynolds numbers than had previously 
been supposed and that, even if the flow were turbulent, the mean velocity distribution 
might still be well represented by a laminar solution if the exchange of momentum 
from one fluid layer to another was dominated by the vigorous mixing produced by 
the vortices rather than by the much smaller-scale turbulent eddies. Finally, Longuet- 
Higgins (1981) has put forward a solution based on the 'discrete vortex' method. 

There have been a number of experimental studies of the velocity distribution close 
to beds in oscillatory flow (e.g. Kalkanis 1957, 1964; Jonsson 1963; Horikawa & 
Watanabe 1968; Sleath 1970; Greated & Manning 1970; Manning 1971; Macdonald 
1973; Jonsson & Carlsen 1976; Nakato et al. 1977; Bakker & Van Doorn 1978; Beech 
1978). With the exception of Nakato et al. none of these investigations was made with 
bed profiles which closely resembled those of naturally occurring ripples. Also, Nakato 
et al. were principally concerned with the measurement of sediment suspension and 
only two velocity traverses (one above a crest and one above a trough) were made 
with a bed of sand free to form its own ripples. However, the velocity distribution in 
the immediate vicinity of the bed is strongly dependent on the bed profile. Thus, 
although these previous studies are of considerable interest in other respects they do 
not provide much help in determining which, if any, of the various methods for cal- 
culating the velocity distribution is most suitable for the case of real ripples in 
oscillatory flow. 

The first objective of the present tests was to provide data for the velocity distribu- 
tion close to self-formed ripples on beds of sand in oscillatory flow in order to allow 
comparison of the various available theories. In  addition, tests have been carried out 
with a fixed rippled bed in order to examine more closely the relative importance of 
the various flow parameters. 

2. Experimental equipment 
Experiments were carried out both in an oscillating tray rig and in an oscillatory 

flow water channel. 
The oscillating tray rig is shown in figure 1. It consist'ed essentially of a flat tray 

0.305 m wide and 1.67 m long which was oscillated in its own plane in a tank of still 
water. The tank was 0.31 m wide and 2.14 m long and the depth of water above the 
tray was 0-48 m. Simple harmonic motion was created by means of a variable speed 
motor with feed-back control driving a Scotch Yoke. The tank was divided into three 
sections by vertical baffles placed 0-46m from each end and extending down to 
within about 0.08 m of the bed. The purpose of these baflles was to prevent vortices 
shed by the end of the tray from propagating into the central test section. Flow under 
these baffles was inhibited by vertical cylinders, whose cross-sectional area equalled 
that of the tray, extending down through the water surface in each of the end sections. 
The cylinders were linked to the tray in such a way that as the tray moved out from 
one end the cylinder a t  that end was lowered to compensate for the volume of water 
displaced, and vice versa. For the tests with beds of sand the average depth of sand 
in the tray was approximately 0.03 m. 
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FIGURE 1. Sketch of the oscillating tray rig. 

Figure 2 shows a sketch of the oscillatory flow water channel. It consisted of a U-tube 
in which the water was caused to oscillate by a paddle driven, via a crank arm, by a 
variable speed motor with feed-back control. The central test section was 0.305 m 
wide, 0-45 m high and had a length of 3.66 m. The open arm of the U-tube had the 
same cross-section but the arm containing the paddle was circular in section with an 
area 3-3 times that of the test section. The walls of the rectangular section of channel 
consisted of 0.025 m thick Perspex but the circular drum was stainless steel. The 
average depth of the sediment in the test section was usually about 0.04 m. 

The oscillating tray rig had the advantage that it could be operated over a wide 
range of strokes and periods of oscillation whereas the water tunnel was restricted 
to periods close to its resonant period of 4-6 s. On the other hand the oscillating tray 
rig could not be used a t  high sediment transport rates without significant loss of sand 
from the bed. Also, it was easy to make velocity measurements down into the trough 
between crests with the water channel but not with the oscillating bed. 

The velocities were measured with a laser-doppler anemometer. A 5 mW Helium- 
Neon laser was used in forward scatter mode with a Malvern Instruments Frequency 
shifter and a Cambridge Consultants frequency tracker. Output from the frequency 
tracker was recorded on magnetic tape and subsequently fed through an analog-to- 
digital converter into a computer for analysis. The laser and its associated optics were 
mounted on a milling machine base to allow vertical and horizontal traversing. With 
the equipment available it was only possible to measure one component of velocity. 
The results given below are all for t'he horizontal component of velocity. Calibration 
was carried out a t  periodic intervals with the aid of a Feedback FG 601 Function 
Generator. 

The size of the measuring volume containing the interference fringes was 0.3 mm 
wide, 0.3 mm high and 1.0 mm across the tank in all tests. Since we are concerned 
with two-dimensional flows the finite size of the measuring volume in the direction 
across the tank is unlikely to introduce any significant error. However, at right angles 
to the bed the velocity gradient may be very large so that the finite size of the measuring 
volume in that direction may not be unimportant. In order to check this point, pre- 
liminary velocity measurements were made with a glass plate installed in the oscil- 
lating tray rig. Figure 3 shows a typical velocity profile. The close agreement between 
theory and experiment suggests that the finite size of the measuring volume does not 
introduce any significant error. 

It will be seen from figure 3 that the syst'em of compensating cylinders described 
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FIGURE 2. Sketch of the oscillating flow water tunnel. 
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above did not entirely eliminate oscillation of the fluid in the tank outside the boundary 
layer. The amplitude of this parasitic oscillation was found to vary with period, but 
for none of the tests with rippled beds did it exceed 5 yo of the amplitude of the tray 
velocity. For an infinite smooth plate oscillating with velocity U,coswt in a semi- 
infinite fluid it may readily be shown that in laminar flow the fluid velocity u a t  dis- 
tance y from the plate is 

u = U,exp ( -py) cos (wt -By) + V,[cos (wt + q5) -exp ( -by) cos (wt + q5 -,8y)], (1) 

where Urn cos (wt + $) is the fluid velocity a t  large distances from the plate, w is angular 
velocity, t is time and ,8 = (w /2v ) *  where v is kinematic viscosity. For the test shown 
in figure 3 the amplitude U, and phase q5 of the velocity in the fluid a t  large distances 
from the bed were determined by direct measurement. 

For the oscillating tray rig, phases were measured with the aid of a beam of light 
falling on a photo-electric cell. A flat plate was attached rigidly to the Scotch Yoke 
in such a way that the aeam of light was interrupted as the tray passed through the 
top dead-centre position. Output from the photo-electric cell was recorded on magnetic 
tape and analysed in the same way as the velocity signal. For the oscillatory flow 
water channel the output from a resistance gauge in the open leg of the tube was used 
as a phase marker. The phase shift between this signal and the fluid velocity outside 
the boundary layer was determined by comparing the two signals when the velocity 
in the test section was being recorded a t  large distances from the bed. The resistance 
gauge was also used to check that there was no change in the amplitude and period 
of fluid oscillation during the course of a test. However, the actual amplitude of the 
fluid oscillation in the test section was always determined directly from the velocity 
measurements a t  large distances from the bed. This avoided the need for complicated 
corrections for the change in section due to the bed of sand and the boundary layers 
on the walls. 

Fourier analysis of the velocity measurements a t  large distances from the bed in 
the test section of the oscillatory flow water channel showed that the free-stream 
oscillation was not entirely free from harmonics. However, in no test did a harmonic 
exceed 5.2 % ofthe fundamental and in most cases harmonics \yere significantly smaller. 
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FIGURE 3. Variation with height of (a)  the amplitude and ( b )  the phase of the velocity over p. 

glass plate in the oscillating tray rig. Uo/(wv)$ = 166.6. 0, measured velocity; --, theory, 
equation ( 1 ) .  

Tests were carried out with both self-formed and artificial ripples. Almost all of 
the tests with self-formed ripples were carried out with a sand of median diameter 
0.41 mm and standard deviation 0.10 mm. With this sand the only stable ripples 
which could be obtained in both the water channel and the oscillating tray were vortex 
ripples. A number of other sands ranging in diameter from 0.1-1.27 mm were also 
tested but in no case were stable rolling-grain ripples (i.e. ripples with height-to- 
length ratios less than about 0.1) obtained. However, it has been suggested that 
rolling-grain ripples are stable a t  very high sediment transport rates. Consequently 
tests were carried out in the water channel with Perspex beads of median diameter 
0.6 mm under conditions approaching those of a ‘washed-out’ bed (i.e. plane bed with 
very high sediment transport). Unfortunately, useful velocity measurements could 
only be made when the bed appeared almost plane, since, when well-defined ripples 
were present, the sediment in suspension obscured the laser beam over almost the 
entire test section. The specific gravity of the sand was 2.65 and of the Perspex beads 
was 1-13. 

The artificial ripple bed was made out of wood and was machined on a numerically- 
controlled milling machine to the following profile 

y = khcoskt, x = E-khsinkt, (2) 

where the crest-to-trough height h of the ripple was 0.017 m and the wavelength 
2n/k was 0.10 m. This profile is very similar to t,hat of the ripples which form with 
the 0.41 mm sand. Figure 4 shows a comparison between equation (2) and two of 
the ripplc profiles obtained with the 0.41 mm sand in the oscillating tray rig. These 
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( b )  
FIGURE 4. Comparison of equation (2) with ripple profiles measured using 0.41 mm sand. 
(a )  L = 0.138 m; h /L  = 0.17. ( b )  L = 0.156 m;  h /L  = 0.14. 0, measured profile; -, 
equation (2). 

profiles were measured with the tray a t  rest and may consequently be regarded as 
mean profiles. 

Further details of the experimental equipment are given by Du Toit (1980). 

3. Test procedure and results 
At  least one day prior to the test the tank was filled with tap water and left to de- 

aerate. With beds of self-formed ripples the appropriate frequency and amplitude of 
oscillation were selected and the rig was run until the ripples reached their equilibrium 
profile. The motor was then switched off and the ripple geometry was measured. On 
the day of the test the equipment was switched on in the morning and left for a t  least 
an hour to warm up. A small quantity of milk was thenadded to  the water to provide 
additional seeding particles for the laser-doppler measurements. 

Most of the tests involved two vertical traverses. For each traverse the output from 
the laser-doppler anemometer was recorded a t  various fixed heights above the bed 
for a t  least thirty cycles. Apart from figures 18 and 19, all of the results presented 
below are for the average velocity cycle obtained by conditional sampling of thirty 
recorded cycles. It was found that there was no significant difference between this 
average cycle and that obtained from the average of sixty recorded cycles. 

During the course of the experiment the water temperature was checked at  regular 
intervals as was the output from the various instruments. At the end of the test the 
ripple geometry was again measured to ensure that there had been no significant 
change during the course of the test. 

The conditions under which the various tests were carried out are summarized in 
table 1. All of the tests with the self-formed ripples were in the fully-developed rough 
turbulent regime according to the criteria of Kajiura (1968), Sleath (1974), Kamphuis 
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a 
( 7 4  

0.06 
0.08 
0.10 
0.12 
0.04 
0.02 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 

0.060 
0.065 
0,085 
0.110 
0.122 
0.096 
0.101 
0.195 
0.141 
0.081 
0.085 
0.166 
0.108 

T 
(4 

3-29 
3.25 
3.36 
3.32 
3.47 
3.47 

1.86 
1.87 
1.90 
1.90 
1.89 
1.96 

5.45 
5.46 
5.47 
5.61 
5.66 
5.56 

3.97 
3.91 
4.73 
4.98 
5.37 
4.22 
3.21 
4.87 
3.18 
5.75 
4.62 
4.65 
3.80 

(i) ArtiJicial ripples 

h a 
L L 

0.6 0.17 
0.8 0.17 
1 .o 0.17 
1-2 0.17 
0.4 0.17 
0.2 0.17 

0.2 0.17 
0.4 0.17 
0.6 0.17 
0.8 0.17 
1.0 0.17 
1.2 0.17 

0.2 0.17 
0.4 0.17 
0.6 0.17 
0.8 0.17 
1.0 0.17 
1.2 0.17 

- - 

(ii) Self-formed ripples 

0.71) 0.13 
0.72 0.18 
0.7 1 0.18 
0.67 0.17 
0.7 1 0.17 
0.83 0.19 
0.74 0.20 
0.77 0.17 
0.67 0.16 
0.75 0.19 
0.86 0.19 
0.68 0.18 
0.72 0.20 

TABLE 1. Test conditions 

In lk 
15.02 
15.22 
15-05 
15.25 
14.94 
14.95 

19.92 
19.98 
19.98 
19.91 
20-03 
19.74 

12.05 
12.06 
11.99 
11.86 
11.86 
12.00 

10.04 
12.08 
14.99 
19.89 
19.67 
15.05 
20.26 
30.27 
31.05 
12.10 
12-18 
30.54 
19.97 

uo L - 
V 

10690.3 
14637.0 
17872.9 
22039.2 

7049.8 
3528.1 

6268.3 
12603.5 
18738.0 
25036.1 
31668.2 
36937.0 

2291.7 
4593.0 
6810.8 
8888.8 

11097.9 
13644.6 

6280.7 
8273.9 

12570.8 
20957.5 
21617.5 
14898.2 
23884.0 
55812.8 
50935.9 
8611.9 

1000 1.4 
49852.9 
22676.9 

(1975) and Jonsson (1980). For the artificial ripples, the criteria of Kamphuis and 
Kajiura indicate that all of the tests were in the fully-developed rough turbulent 
regime. On the other hand the criteria of Sleath (1974) and Jonsson suggest that those 
tests in table 1 for which a / L  = 0.2 and some of those a t  a / L  = 0.4 were not fully- 
developed rough turbulent. None of the above criteria are based on measurements for 
ripple beds. However, the formula of Sleath (19753), which is based on ripple bed 
measurements, indicates that the tests for a / L  = 0.2 were not turbulent whereas all 
of the others were. It thus seems reasonable to conclude that the artificial ripple tests 
in table 1 for which a / L  = 0.2 were not turbulent, those for a / L  = 0.4 were either 
transition or fully-developed rough turbulent, and those for a / L  2 0.6 were in the 
fully-developed rough turbulent regime. 
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3.1. ArtiJicial ripples in oscillating tray rig 

The t,wo traverses made during each test will be referred to as traverse A and traverse 
B. At mid-stroke the measuring volume of the laser-doppler anemometer was directly 
above a ripple crest for traverse A and directly over a trough for traverse B. 

Figure 5 shows an example of the sort of result obtained for the average velocity 
cycle. Two curves are shown for the test results. If the ripples are symmetrical about 
a crest (as is the case here) the mean velocity (averaged over a large number of cycles) 
during one half cycle should, by symmetry, be equal in magnitude but opposite in 
sign to that in the other half cycle. The dashed line during one half cycle is the ‘mirror 
image ’ of the full line during the other half cycle. Thus the difference between the two 
curves provides an indication of the magnitude of experimental errors such as mean 
drift in the tank. Since the analog-to-digital conversion was carried out a t  a rate of 
between 600 and 720 samples per cycle the experimental results are shown as con- 
tinuous curves. 

Also shown are the predictions obtained from the formulae put forward by various 
workers. Since the flow was probably laminar, agreement between Bakker’s method 
(which assumes turbulent flow) and the experimental results is hardly to  be expected. 
This comment would also apply to Jonsson’s formula. However, there is another 
reason why no comparison is made with Jonsson’s formula, either here or in any of 
the subsequent figures. This is that  Jonsson’s formula is only valid when there is an 
overlap layer. According to Kajiura (1968) the overlap layer disappears when alk, < 30, 
where k, is the Nikuradse roughness size. Thus if ks = 4 h, where h is ripple height, 
and h/L = 0.17, which is the value adopted for the artificial ripples, Jonsson’s formula 
cannot be used if a / L  < 20.4. It may be mentioned in passing that Horikawa & 
Watanabe (1968) suggested that Kajiura’s results actually show that the overlap 
layer disappears when alk ,  < 115 (the present authors have repeated the calculation 
and find the same result). This would mean that, for h /L  = 0.17, Jonsson’s formula 
would only apply when a / L  > 78.2. These limits should be treated with some caution 
since Kajiura’s model is based on the assumption that an overlap layer either exists 
during the whole of the cycle or not a t  all. I n  reality an overlap layer might exist for 
only part of the cycle. However, the limiting values of a / L  are so much greater than 
those in the present tests (cf. table 1) that any comparison with Jonsson’s formula 
would be meaningless. 

The formula put forward by Kalkanis ( 1964) is purely empirical and was based on 
the results of his tests with round and half-round rods. I n  making the comparison 
shown in figure 5 i t  has been assumed that the rod diameter D may be replaced in his 
formula by the wavelength of the ripples. Various other assumptions as to the value 
to be adopted for D are possible but this is the one which gives the most favourable 
comparison between Kalkanis’ formula and the present test results. I n  this and 
subsequent figures, the origin for the velocities is assumed to be 0.2 h below the crest 
level for the formulae of Kalkanis and Kajiura and 0.38 h below crest level for Bakker’s 
method. The Nikuradse roughness size k, is assumed to be 4 h assuggested by Motzfeldt 
(1937). The curves shown for Bakker’s method are for the fundamental component 
only. However, since the higher harmonics obtained with this method are invariably 
small it is believed that their inclusion would not significantly affect the comparison. 

The method of Sleath is the same as that outlined by Sleath (1974). However, so 
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FIGURE 5 .  Examples of the average velocity cycle using the artificial ripple bed. a fL = 0.2, 
P/k = 20, Pyl = 3.1.  (a )  Traverse A ; ( 6 )  traverse B. __ - __ , Kajiura; 
Kalkanis ; __ - - - __ , Bakker ; 0, Sleath. 

as to obtain a bed profile more like that of natural ripples the curvilinear co-ordinate 
system used in the present calculations was 

6 =x+@exp(-ky)sink& r] = y-&hexp(-ky)cosk[. (3) 

If the bed is taken to be 7 = 0 this gives the same profile as (2)  which, as shown by 
figure 4, is very similar to that of naturally-occurring ripples. As mentioned by Sleath 
(1974) the computed velocity ceases to be identical from one cycle to the next when 
the Reynolds number exceeds certain limit. This is to be expected since the method 
consists of a numerical solution of the Navier Stokes equations. Thus, under condi- 
tions where the real flow ceases to be identical from one cycle to the next (cf. Sleath 
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19753) we would not expect the computed flow to remain stable. Consequently, the 
results shown here have been averaged, in the same way as the experimental results, 
over a sufficient number of cycles for the mean cycle to be identical from one sample 
to the next. Most of the computations were made with 800 time steps per cycle. The 
points shown in figure 5 represent the velocities a t  the end of each 20 time steps. The 
mesh spacing in the [-direction was the same as that of Sleath (1974) but that  in 
the 7-direction was modified to give an outer boundary a t  py = 184. 

No comparison has been attempted with the method of Longuet-Higgins (1981) 
since velocity profiles are not available at the time of writing. 

It should be pointed out that y is vertical distance measured from the mean bed 
level whereas yl is measured from the ripple crest. Thus 

y = yl+gJL. (4) 

A value of a / L  = 0.2 would only be found in practice with a ripple formed under 
more severe flow conditions and then remaining when the amplitude of oscillation 
dropped. Figure 6 shows an example of the results obtained with the artificial ripples 
a t  a /L  = 1.0. This represents very severe flow conditions for a ripple as steep as this 
since, although larger values of a / L  may be found in practice, they usually correspond 
to smaller values of h/L.  

Comparison of figures 5 and 6 shows that Sleath’s method gives very good agreement 
with the experimental results a t  low values of a /L  but that the agreement becomes less 
good a t  high a/L. This is hardly surprising since the assumption in Sleath’s method 
that turbulence does not significantly affect the mean velocity profile will obviously 
be more reasonable, for given P / k ,  a t  low values of a /L  than a t  high values. The way 
in which the situation changes with increasing a / L  is illustrated in figures 7 and 8. 
Figure 7 shows the maximum value Urn of the horizontal component of velocity during 
the course of a cycle and figure 8 shows the phase at which this maximum occurs. 
For traverse B the magnitude of the maximum measured velocity rises to a peak a t  
a / L  = 0.6 and then declines slightly a t  both Byl = 3.0 and Byl = 15.0. For traverse A 
the maximum velocity initially falls slightly but then increases again with increasing 
a/L  a t  pyl = 3.0 whereas it climbs steadily as u/L  increases a t  Byl = 15.0. These 
trends are quite well reproduced in Sleath’s computed results but the other three 
methods all show a steady increase in maximum velocity with increasing u/L. 

If only figure 7 were available one would be tempted to conclude that Kajiura’s 
method gave significantly better agreement with the experimental results than either 
Kalkanis’ or Bakker’s methods. However, it is clear from figures 5 and 6 that although 
Kajiura’s method gives a reasonable prediction of the magnitude of the maximum 
velocity its prediction of the phase a t  which this maximum occurs is poor. This is 
illustrated by figure 8 which shows that only Sleath’s method gives close agreement 
with the experimental phases. The discontinuous nature of the experimental curve 
for traverse A arises because, as shown by figure 6 ,  the velocity record has several 
peaks. At one value of a /L  one of these peaks may be the largest whereas a t  a slightly 
different value of a / L  another peak may dominate. 

Finally, figure 9 shows, for traverse A ,  the way in which the amplitude and phase 
of the maximum velocity during the course of the cycle vary with py, for various 
values of a /L .  Figure 10 gives the corresponding results for trax~erse B. It is clear that, 
with the exception of t,he two largest values of a/L  for traverse B, there is little 
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FIGURE 6. Examples of the average velocity cycle using the artificial ripple bed. a / L  = 1.0, 

W t  

P / k  = 20, = 3.1. (a)  Traverse A ; ( b )  Traverse B. For the symbols see figure 5 .  

variation in phase with pyl for given a/L.  For this value of /Ilk there is also little 
variation in the magnitude of the maximum velocity for the range of y1 investigated. 
In  order not to  confuse these figures the predictions of the various methods are not 
shown. However, since the variation with /3yl is generally small the sort of comparison 
to be expected may be inferred from figures 7 and 8. 

All of the discussion so far has been of tests for which /3/k = 20. Similar tests were 
also carried out a t  p / k  = 15 and P / k  = 12. Figures 11 and 12 show the way in which 
the maximum velocity at  /3yl = 3.0 and Byl = 15.0 varies with a / L  for the three 
values ofP/k. Very close to the bed, i.e. a t  Byl = 3.0, there is hardly any variation in 
U,/U, with P / k .  The influence of P / k  is somewhat greater at  pyl = 15.0 but, even here, 
the general trends are very much the same for the three values of P / k  investigated. 



82 C .  G. Du Toit and J .  F. A .  Sleath 

1 .o 
urn 

ff0 

- 

0.1 

0.01 

I I I I I 1 

0.2 0-6 1 .o 

FIGURE 7 .  Variation with a / L  of the magnitude of the maximum velocity during a cycle. 
(a)  py1 = 3-0, P / k  = 20. ( b )  Byl = 15.0, p / k  = 20. __-__ , Kajiura; ----, 
Kalkanis ; __ - - - __ , Bakker; 0, traverse A ,  measnrement; 0, traverse A, Sleath; 
0 ,  traverse B, measurement; B, traverse B, Sleath. 
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FIGURE 8. Variation with a / L  of the phase a t  which the maximum velocity during a cycle occurs. 
(a )  /7yl = 3.0, /3/k = 20; (6 )  pyl = 15.0, / 3 /k  = 20. The symbols are the same as in figure 7.  

It might be thought that viscous effects would be relatively unimportant for this sort 
of flow and that consequently ky, would be a more relevant parameter than pyl in, 
say, figures 9 and 10. This is clearly not true in the immediate vicinity of the bed, 
where viscous effects are highly important. Also, it was found that when the results, 
such as those shown in figures 9 and 10, were plotted against kyl the scatter between 
curves for different values of P I E  was no less than with Byl as independent variable. 
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FIGURE 9. Variation with byl of (a )  the magnitude and (b )  the phase of the maximum velocity 
duringacycle.TraverseA.P/k = 20. a,a/L = 0.2; O,a/L = 0.4; a,a/L = 0.6; +,a/L = 0.8; 
x ,  a/L = 1.0; m ,  a/L = 1.2. 
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FIGURE 10. Variation with /3yl of (a )  the magnitude and (b)  the phase of the maximum velocity 
during a cycle. Traverse B. P / k  = 20. The symbols are the same as in figure 9. 
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FIGURE 13. Example of the variation with /3yl of the maximum velocity during a cycle. 
Self-formed ripples. a / L  = 0.79, P / k  = 10, h /L  = 0.13. For the symbols see figure 7 .  
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FIGURE 14. Example of the variation with of the phase at  which the maximum velocity 
during one cycle occurs. Self-formed ripples. a / L  = 0.79, P / k  = 10, h / L  = 0.13. For t.lm 
symbols see figure 13. 
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3.2. Sey-formed ripples in the oscillating tray rig 

The results obtained with the self-formed ripples in the oscillating tray rig are very 
similar, for given a / L ,  to those obtained with the artificial ripples. Figures 13 and 14 
show an example. The value of a / L  for this test was 0-79 and h / L  = 0-13. The flow 
conditions were consequently intermediate in severity between those of figure 5 and 
those of figure 6 and thus the reasonable agreement between Sleath's method and the 
experimental resulk is not unexpected. Kajiura's method also gives quite a good 
prediction of the magnitude of the maximum velocity. However, figure 14 shows that, 
as for the artificial ripple tests, Kajiura's prediction of phase is a long way from the 
experimental measurements. 

For the test results shown in figures 13 and 14 the bed was active. However, the 
sediment movement was not intense since, otherwise, there would have been significant 
loss of sand from the tray. 

3.3. Sey-formed ripples in the oscillating $ow water channel 

It has already been pointed out that Kajiura's method gives a reasonable prediction 
of the amplitude of the maximum velocity with the oscillating beds but a poor pre- 
diction of the phase. The opposite appears to be the case when we are dealing with a 
stationary bed and an oscillating fluid as shown, for example, in figure 15. The reason 
is, of course, that the change from axes fixed relative to the free stream to axes fixed 
relative to the bed introduces a velocity component Urn cos wt, where U, is the ampli- 
tude of the free-stream velocity. When this component is combined with the oscillating 
bed velocity to obtain the fixed bed velocity the large error in phase with Kajiura's 
method results in a correspondingly large error in magnitude. On the other hand the 
error in phase of the resultant velocity is reduced. 

The formulae of Kalkanis and Bakker show somewhat better agreement with the 
measured velocities over the trough than with those over the ripple crest, but even 
over the trough the agreement is not perfect. The best agreement is obtained with 
the method of Sleath. For those who are cynically inclined it should be pointed out 
that Sleath's method does not involve any empirical coefficient which can be adjusted 
to improve agreement with experiment. The only parameters which can be varied 
are a /L ,  P / k  and h/L, and in all cases the actual experimental values for the test in 
question were adopted. However, figure 15 does show a small peak in the velocity 
record a t  a phase of about 130" over the crest and 170" over the trough which is not 
reproduced in Sleath's computed velocities. This peak corresponds to the surge in 
velocity as the vortex in the lee of the crest is carried back over the crest when the flow 
reverses. It was pointed out above that the bed profile for which computations were 
made should be regarded as the mean profile. During the course of a cycle the crest 
sways from side to side forming a small cusp of sand first on one side and then, as 
the flow reverses, on the other. It might be thought that the discrepancy between the 
experimental and computed results is due to the absence of these cusps in the bed 
profile assumed for the computations. However, analysis of the results for the artificial 
rippled bed showed the same peaks in the recorded velocity a t  the same points in the 
cycle. Since the profile of the artificial rippled bed was the same as that for which 
computations were made it would seem that it is not the absence of ctisps in the bed 
profile which is responsible for the observed discrepancy. 
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FIQURE 15. Examples of the average velocity cycle obtained with self-formed ripples in the 
water channel. a / L  = 0.71, /3/k = 20, h /L  = 0.17. (a)  Measured above the crest, /3y1 = 1.44. 
(b) Measured above the trough, By, = 1.18. For the symbols see figure 5. 

The way in which the amplitude and phase of the maximum velocity during the 
cycle vary with byl is shown in figure 16 for a crest traverse and in figure 17 for a 
trough traverse. On the whole the best agreement between theory and experiment is 
obtained with Neath’s method and the least good agreement with Kajiura’s. When 
interpreting these figures it should be remembered that a t  small values of pyl the 
maximum velocity is that a t  the small local peak shown in figure 15. Further out this 
local peak becomes progressively less marked. 
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FIGURE 16. Variation with pyl of (a) the amplitude and (b )  the phase of the maximum velocity 
above theripplecrest.a/L = 0-71 ,p /k  = 20,h/L = 0.17.---- , Kajiura; - - - -, 
Kalkanis; - - - - - , Bakker; - - 0 - -, Sleath. 

The velocity potential for a stream oscillating with simple harmonic motion over 
a bed whose profile is given by (2) is 

4 = u,gcosot, (5) 

where the velocity at  infinity is U, COB wt. The variation in Um/Ua for this potential 
flow is also shown in figures 16 and 17. Over the crest the agreement with experiment 
is close except, as would be expected, in the immediate vicinity of the bed. The 
agreement is less good over the trough since the measured velocity is strongly in- 
fluenced by separation in the lee of the ripple crest which, of course, does not occur 
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FIGURE 17. Variation with pyl of (a )  the amplitude and ( b )  the phase of the maximum velocity 
above a ripple trough. a f L  = 0.71, pflc = 20, hfL = 0.17. For the symbols see figure 16. 

in potential flow. The variation in phase with height of the potential flow is not shown 
in figures 16 and 17 in order not to further confuse these figures. However, it will be 
seen from (5) that the phase lag of the potential flow is zero both above crest and 
trough. This is in reasonable agreement with the experimental results except close 
to the bed above the ripple crest. As pointed out above, the maximum velocity in 
this region is found a t  the small peak in the velocity record produced by the vortex 
carried back over the crest when the flow reverses. Since the potential flow does not 
show vortex formation, close agreement is hardly to be expected in this region. It 
may be mentioned in passing that we would expect similar agreement between the 
potential flow solution and the experimental results for the oscillating beds discussed 
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above. However, comparison in that case is complicated by the fact that the measuring 
point moves relative to the bed. Thus both traverses A and B correspond to measure- 
ments above both crest and trough. Also, a t  a fixed height the measuring point may 
a t  one instant be well away from the bed where potential flow is a reasonable approxi- 
mation and subsequently very close to the bed where the approximation is poor. 
The comparison with the potential flow solution is thus not particularly helpful for 
the oscillating bed case. 

So far we have discussed only the mean velocities obtained by conditional sampling 
of 30 recorded cycles, Figure 18 shows an example of the way in which the r.m.s. 
fluctuation in velocity about this mean varies during the course of a cycle. The mean 
velocity is also shown for comparison. The most significant feature of the r.m.s. 
fluctuation in velocity is the peak observed above both crest and trough a t  about the 
same point as the local peak in the mean velocity. As mentioned above, this peak is 
associated with the vortex carried back over the crest and then out over the trough 
when the flow reverses. However, apart from these peaks the r.m.s. fluctuation in 
velocity remains fairly constant during the course of the cycle. Figure 19 shows the 
way in which the mean value of the r.m.s. fluctuations, averaged over a complete cycle, 
varies with height above the bed. The general form of the variation with height is 
similar to that observed by Sleath (1975a) a t  much lower values of Reynolds number. 
Sleath suggested that the length scale of fluctuations in velocity was comparable with 
ripple length and height, rather than with the much smaller scales normally associated 
with turbulence. This conclusion appears to be supported by the way in which 
the r.m.s. fluctuation a t  a given height is almost identical above both crest and 
trough. 

A much more severe test of the agreement between theory and experiment is pro- 
vided by measurements of the Eulerian drift velocities in the vicinity of the ripple 
crest. In  an oscillatory flow water channel there is, in theory, no net drift of the sort 
associated with progressive waves. However, each ripple sets up its own re-circulating 
drift pattern. Figure 20 shows measurements of the horizontal component of the 
Eulerian drift velocity for four vertical traverses. One traverse was over the ripple 
crest, one over a trough and the other two traverses were equally spaced between crest 
and trough. By symmetry, there should be no net flow over either crest or trough and 
consequently the measurements showti in figure 20(a)  provide an indication of the 
degree of experimental error. Of the four methods for calculating velocity discussed 
above, only that due to Sleath predicts a re-circulating drift in the vicinity of the 
ripple. Figure 20 ( b )  shows that the measured drifts are significantly stronger than 
those calculated from Sleath's method but the general variation with height is the 
same. I n  particular, we see a strong drift towards the adjacent ripple crest in the 
immediate vicinity of the bed and a corresponding drift away from the ripple crest 
further out. Since a net drift of fluid near the bed will also produce a net drift of sedi- 
ment, these measurements throw some light on vortex ripple formation in oscillatory 
flow. 

The test results shown in figures 15-20 are all for ,811'~ = 20. Tests were also carried 
out a t  other values of P / k  but, as for the artificial ripple tests, the variation with ,8/k 
was found to be relatively small. It was, unfortunately, not possible to investigate the 
effect of varying a / L  because all of the stable ripples obtained in this rig had very 
similar values of this parameter. 
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FIGURE 18. Examples of the variation of the r.m.s. fluctuation in velocity, u,,,, during the 
course of one cycle. a / L  = 0.71 ,  P / k  = 20, h /L  = 0.1 7. (a) Measured above the crest, byl = 1.44. 
(b )  Measured above the trough, ,Byl = 1.18. 

The measurements with self-formed ripples which have been discussed so far have 
been for low or moderate sediment transport rates, as will have been gathered from 
the quoted values of a / L  and h/L  (at high sediment transport rates a / L  increases and 
h /L  decreases). Figure 21 shows an example of the sort of result obtained when there 
is intense sedment motion. This test was carried out with Perspex beads of median 
diameter 0.6 mm whereas all of the self-formed ripple tests discussed above were with 
0.41 nim sand. At these very high sediment transport rates it was found necessary to 
roughen the floor of the water channel with a layer of gravel in order to prevent slipping 
of the bed of sediment. However, the depth of sediment was sufficiently great for the 
gravel to be covered by a t  least 10 mm of stationary Perspex beads (underneath the 
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FIGURE 19. Variation with distance from the bed of the mean value during one cycle of the r.m.s. 
fluctuation in velocity. a / L  = 0.74, p / k  = 20, h / L  = 0.20. 0, measured above the crest; x , 
measured above the trough. 
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FIGURE 20. Variation with height of the horizontal component of the Eulerian drift velocity. 
a / L  = 0.74, /?/k = 20, h f L  = 0.20. x , measured above the trough; +, measured above the 
crest ; , measured a t  QL from the crest ; , Sleath, #L from the crest ; 0, measured a t  &L from 
the crest; 0, Sleath, )L from the crest. 

moving layers) a t  all times. Under these test conditions the bed appeared plane except 
close to the moment of flow reversal. At this point in the cycle vortex formation 
appeared to occur throwing up clouds of sediment from the bed. However, for the 
most part, the moving sediment was confined to a layer about 20 mm thick with clear 
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FIGURE 21. Variation with distance above the bed of (a) the magnitude and 
( b )  the phase of the maximum velocity. Quasi-flat bed. U,/(wv)t = 381.7. 

water immediately above. With the existing equipment velocity measurements could 
not be extended down into the layer of moving sediment. Nevertheless, a certain 
number of conclusions may be drawn from the measurements shown in figure 21. 
Although the bed appeared plane during most of the cycle and although the flow 
above the layer of sediment appeared laminar, the velocity distribution in figure 
21 (a )  is significantly different from that for a smooth bed in laminar flow even if the 
no-slip condition a t  the bed is relaxed. For the fixed smooth bed the maximum 
velocity occurs a t  By = 2.3 and is 7 yo greater than the free stream velocity. Even 
when allowance is made for the uncertainty as to what should be taken as the bed 
level, the maximum velocity in figure 21 (a)  occurs a t  a value of By of at  least 60 and 
the overshoot is only about 4 %. The variation in phase shown in figure 21 (b) is also 
very different from that for a smooth bed. In  particular, the measurements very close 
to the bed show a phase lag of about 20" whereas for a smooth bed in laminar flow the 
phase lag is nowhere greater than 1". There are various possible explanations for 

4-2 
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these differences. Firstly, although the bed appeared plane there may in reality have 
been very low-amplitude ripples obscured by the layer of moving sediment. Secondly, 
the vortex formation a t  the end of each half cycle would be expected to  have some 
effect. Thirdly, the well-known dilatation of a layer of sediment when motion takes 
place may also have had an effect since most of the sediment came to rest a t  the end 
of each half cycle. This resulted in the top of the sediment layer ‘breathing’ up and 
down during the course of each half cycle. Finally, turbulence may also have been 
important even though the flow appeared laminar. 

The authors would like to  thank the NERC for a generous grant for the purchase of 
equipment. One of the authors (C.G.D.T.) would like to acknowledge the financial 
support of the Sir Henry Strakosch Trust and the South African CSIR. 

Appendix 
The experimental data is compared with the predictions obtained from the methods 

of Kalkanis (1964),  Kajiura (1968), Bakker (1974) and Sleath (1974). Since the pub- 
lications in which these methods are set out are not always widely available a brief 
summary of the basic assumptions is given below. 

(a)  Kallcanis (1964)  

This is a purely empirical formula based on velocity measurements close to rough beds 
oscillating in their own plane in a tan.k of water. The bed in the case of the two- 
dimensional roughness consisted of round or half-round rods. 

( b )  Kajiura (1968) 

If the mean flow is assumed to be parallel to the bed the equation of motion may be 
reduced to  

where p is pressure. Kajiura assumes that the shear stress r may be expressed as 

where e is an eddy viscosity which, for rough beds, varies as follows 

6 = 1.354Ku,7cs for 0 < y < +ks, 

E = Ku,d for d < y, 
6 = Ku,y for +kS < y < d ,  (A 3)  

where u+ is the maximum value of ( r /p ) f  a t  the bed, K is the K&rmAn constant and d 
is the upper limit of the overlap layer. Kajiura also assumes that the shear stress varies 
sinusoidally with time. Consequently, substitution of (A 2) and (A 3) into (A 1 )  pro- 
duces a relationship which may be solved analytically. 
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(c) Bakker (1974) 

Bakker, too, makes use of equation (A I). However, he considers only turbulent flow 
and assumes that the shear stress r may be approximated by the Reynolds stress. 
Following Prandtl and von KkmAn he takes 

where the mixing length 1 is given by 
1 = K y .  

Substituting from (A 4) and (A 5) into (A 1)  and assuming that ap/ax is constant 
across the boundary layer gives an expression which may be solved numerically. The 
shear velocity is assumed to vary sinusoidally with time at y = 0. 

( d )  Sleuth (1974) 

This method consists essentially of a numerical solution of the two-dimensional 
vorticity equation obtained by cross-differentiation of the Navier Stokes equations 
to eliminate pressure. The viscosity is assumed to have bhe value appropriate for 
laminar flow, i.e. no use is made of eddy viscosity or mixing length. 
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